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THEORIES WITH ONLY A FINITE NUMBER 
OF EXISTENTIALLY COMPLETE MODELS 

BY 

JAMES H. SCHMERL 

A B S T R A C T  

We construct, in particular, a countable universal theory with JEP which has 
exactly 2 non-isomorphic countable existentially complete models, and these 
two models can be either elementarily equivalent or inequivalent. 

The theory of countable universal theories with JEP (the joint-embedding 

property) and their countable existentially complete models, in some aspects of 

its development, is analogous to the theory of countable complete theories and 

their countable models. This analogy is systematically exposed in [5]. Indeed, by 

pursuing this analogy we were led to the simple examples in [4] of countable 

universal theories T,, for 2 _<- n < to, with JEP which have exactly n + 1 elemen- 

tary equivalence classes of existentially complete models. This complemented 

the example in [1] of a theory T with JEP which has exactly 2 elementary 

equivalence classes of existentially complete models. One difference between 

these examples is that each of the T. has exactly n + 1 non-isomorphic countable 

existentially complete models, whereas T has infinitely many non-isomorphic 

countable existentially complete models. It appeared that there was some 

obstruction to extending our examples so as to get a theory TI with exactly 2 

non-isomorphic countable existentially complete models. Was this apparent 

obstruction somehow connected to an analogue of Vaught's remarkable result 

[6] that a complete theory cannot have exactly 2 non-isomorphic countable 

models? At the time we wrote [4] we felt that this was so, seemingly not a 

completely heretical belief since Simmons [5] conjectured that there indeed was 

such an analogue of Vaught's theorem. 

In this note, however, we construct examples of theories which eliminate any 

hope of finding such an analogue. In particular, we construct a countable 

universal theory with JEP which has exactly 2 non-isomorphic countable 
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existentially complete models, and these two models can be chosen to be either 

elementarily equivalent or not.* 

Suppose that (P, A, V, _--< ) is a finite lattice. Each subset Q c P induces an 

equivalence relation on P in which two elements x, y E P are Q-equivalent iff 

for each q E Q ,  q_-<x iff q ~ y .  

THEOREM. Suppose (P, A, v, <_-- ) is a finite lattice, and Q C_ 1>. Then there is a 

countable universal theory T with JEP, and there are 9Jp for each p E P, such that: 

(1) ~ is a countable existentially complete model of T iff ~ ~ 92, for some 

p E P ;  

(2) 91~ is embeddable in ~q iff p <= q ; 

(3) 92p -= 91q iff p and q are Q-equivalent. 

PROOF. Let us assume at the outset that I P] > 1. For, if t P t = 1 then we can 

get many examples of such T by using the result of Saracino [3] and letting T be 

the universal part of any N0-categoricai theory. 

It will be much more convenient at first to consider the notion of positive 

existential completeness, rather than just existential completeness. For this we 

need a weakening of the notion of embedding. We say that 91 is positively 

embedded in ~ iff A C_ B and whenever R is an r-ary relation symbol and 

a0 , - ' - , a , -1E  A are such that 91~ R(a0, . - . ,ar_l) ,  then ~ R ( a o , . . . ,  a,-l). In 

this case we write 9.I_C e ~ .  We say that 91 is positively embeddable in ~ iff there is 

~f  such that 91_Cp ~ = ~ ;  and if f : ~ i - - ~  is the isomorphism, then f t  A is a 

positive embedding of 92 into ~ .  A theory T has the positive joint-embedding 

property (PJEP) iff for each two of its models, there is a third in which both are 

positively embeddable. By the usual diagram argument it can be shown that T 

has PJEP iff T can be extended to a complete theory which has the same 

negative universal sentences as T. (A sentence is negative if it is (logically 

equivalent to) the negation of a positive sentence. We allow that in a positive 

sentence both = and ~ can occur.) If T has PJEP, then a model ~ of T is 

positively existentially complete (p.e.c.) if whenever a 0 , ' " ,  a,_~E A, 

~b(Xo, �9 �9 -, x._~) is a positive existential formula, 91Cp ~3, ~ is a model of T, and 

~ ~b(a0,-.., a,_~), then 92~ ~b(a0,'. ", a,-l). 

We will now prove the Theorem in the context of the above definitions. 

THEOREM (positive version). Suppose (P, A, V, <= ) is a finite lattice, and 

Q c P. Then there is a countable negative universal theory To with PJEP, and 
there are 920 for each p E P such that: 

' Added in proof. J. Hirschfeld has also succeeded in producing a theory with JEP which has exactly 
2 non-isomorphic countable existentially complete models. This example can be found in his paper, 
Examples in the theory of existential completeness. 
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(1) 2) is a countable p.e.c, model of T if[ ~ ~- ~p for some p E P; 

(2) ~p is positively embeddable in ~q iff p <= q ; 
(3) 92p =--Plq iff p and q are O-equivalent. 

We will first consider the case Q = 0, and then later show what changes to 

make for arbitrary O C P. 

Let P = { p o , " ' , p , } ,  where p, 

whenever i < j =< n. Let H be the 

p~<=p~vp~. 

is the least element of P, and where p ,~  pj 

set of all triples (c, d, e) where c, d, e < n and 

We now let Lo be the language consisting of the following symbols: 

(1) a unary relation symbol U k for each k < n; 

(2) a unary relation symbol U~ for each k < n and i < to ; 

(3) a ternary relation symbol Rc~e for each (c, d, e ) E  H ;  

(4) two binary relation symbols E and S. 

We now let To be the theory in Lo consisting of the following sentences: 

(1) U'  f"l U j = 0 whenever i < ]  < n, and {U~ ..  ., U "-I} is a partition; 

(2) U~_C U ~ whenever k < n and i < to ; 

(3) U~f) U ~ = 0 w h e n e v e r  k < n  a n d i < j < t o ;  

(4) I U~I = i + 1 whenever k < n and i < to; 

(5) E is an equivalence relation; 

(6) U~ is an equivalence class of E and U k is the union of equivalence classes 

of E whenever k < n and i < to; 

(7) S = O; 

(8) Rc~e(x, y, z)---~ (UC(x) A Ud(y) A U'(z)),  whenever (c, d, e) E H ;  

(9) (Rcd,(x,y,Z)A U',,(Z))---~ V,~_m (U~(x)v U,~(y)), whenever ( c , d , e ) E n  
and m < to; 

(10) UC(x) A U~(y)  A Ue(z) A A,<,, ~U~(z )  A V,~m (U~(x) v U~,(y))--*Rcn,(x,y,z 
whenever ( c , d , e ) E H  and m <to. 

Sentences (9) and (10) are not so formidable as they might appear. To give a 

more informal account of their content, for any x let p(x) = i if there are k < n 

and i < to such that x E U, ~. In case there are no such i and k, then let p(x) = 

with the usual conventions concerning < .  

Now suppose x ~ U  c, y E U  d and z E U ' .  Then sentences (9) and (10) 

together assert that 

R,d, (x, y, z) r min (p(x),  p(y))_<-- p(z) 

as best as can be asserted with a set of first-order sentences. 

Notice that the theory To is positively inductive ; that is, the direct limit of a set 

of models of To directed under positive embeddings is also a model of To. Thus, a 

p.e.c, structure is a model of To. In this Theorem we actually require that To be 
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negative universal, and it is not. But there is no problem because the negative 

universal part of To can be considered just as well. 

From sentences (1)-(10) it follows that there is a unique model 9 /o f  To such 

that p (a )  < ~ for each a E A. This model is p.e.c, and embeddable in any other 

model of To. Conversely, no other model is positively embeddable in 9/. 

The following facts concerning models 9 /and 23 of To are all rather evident. 

1. If 9/C_p 23 and x ~ A, then p~(x)= p~(x). (Thus, we can unambiguously 

refer to p(x).)  

2. If 9 /~  (Uk(x) ^ Uk(y))  for some x, y E A and p(x) = p(y),  then there is a 

model 9/, of To such that 9/C_p 9/1 and 9 / l ~ E ( x , y ) .  

3. If x,y, z E A  are such that 9 / ~ U C ( x ) ^ U d ( y ) A U e ( z )  and 

m i n ( p ( x ) , p ( y ) ) =  < p(z) ,  then there is a model 9/1 of To such that 9/C_p 9/1 and 

9/l~ Rcde(x,y,z). 
From facts 1-3 above we can make the following observation. Suppose that 9/ 

and 23 are models of To, and that 23 is p.e.c. Let f : A ~ B be a one-one function 

such' that whenever x ~ A, i <  o) and k < n, then 9/~ U~(x) iff 23b U~(f(x)), 
and 9 /b  U k (x) iff 23 ~ U k (f(x)). Then f : 9 / ~  23 is even a positive embedding. 

If, in addition, 9/ is p.e.c., then f is an embedding. Furthermore,  if f is a 

bijection, then f is an isomorphism. 

For a model 92 of To, let V ( 9 / ) = { k < n : 9 / b 3 x ( U k ( x ) ^ p ( x ) = ~ ) } .  It is 

clear that if 9/ is  p.e.c, and k ~ V(9/), then {x C A  :9 /~(Uk(x)^p(x)=oo)}  is 

infinite. Thus, from the above observations, we can easily conclude that if 9 /and 

23 are countable p.e.c, models, then 9/is embeddable in 23 if V(9/) C V(23), and 

also 9/ is isomorphic to 23 iff V(9/)= V(23). 

Because of the inclusion of sentences (8) and (9) in the theory To, it easily 

follows that if 92 is a p.e.c, model of To which is not the minimal one, then there is 

some k < n such that V(9/) = {j < n : pj _-< pk}. For, by way of contradiction, 

suppose that c, d E V(9/) are such that pc and pd are maximal, incomparable 

elements of {pj : j  E V(9/)}. Then there is e ~  V(9/) such that ( c ,d , e )EH.  If 

ao, a~ are such that p(ao) = p(al) = ~ and 9/~  (U c (ao) ^ U d (a0),  then due to 9/ 

being p.e.c, and fact (3), there is b such that 9/~ R,~,(ao, al, b). By sentence (9) 

p(b) = ~. But then e E V(9/), which is a contradiction. 

Conversely, it is easy to construct, for each k < n, a countable p.e.c, model 9/ 

of To such that V(9/) = {j < n : pj -< pk }. To do so, we first construct 9/such that 

V(9/) = {0, 1 , - . . ,  n - 1}. Let U ~ U1, .- ., U "-1 be countably infinite, pairwise 

disjoint sets, and set 

A =  LJ U ~. 
k < n  
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For each k < n and i < o~ let U~_C U k such that 

I U ~ l = i + l ;  

i < j <o~ ~ u~ n U ~ = 0 ;  

U~= U k - I,.J U~ is infinite. 

Let E be the equivalence relation on A whose equivalence classes are just the 

U~ for k < n and i < co. For (c, d, e) E H, let (x, y, z ) ~  Red, iff x ~ U c, y E U ~, 

z E U" and min(p(x),p(y))<=p(z). Finally, set S = 0. We then let 

91 = (A, U~, U ~, E, S, Rc~e)~<,.,<~.<,.d.,>~,. 

Now for each k < n, let 91k C 91 where Ak = {x E A :if x ~ U~, then Pi --<P~}. 

Clearly 91~ is a model of To and V(91k)= {j < n :Ps <= P~}. We need only show 

that each 91~ is p.e.c. This is quite routine, and is left as an exercise. 

Finally, notice that To has PJEP. For, if 91 is p.e.c, and V(91) = {0, 1 , . . . ,  n - 1}, 

then every countable ~3 is positively embeddable in 91. 

This proves the Theorem (positive version) in the case O = 0. We indicate the 

changes to make for arbitrary O C P. Without loss of generality we will assume 

that p , ~ O .  (For, notice that O-equivalence is the same as (O t.J {p,})- 

equivalence.) To define To, in the definition of To replace sentence (7) with 

(70) S is a reflexive, partial order defined on U k such that S(x, y) ~ E(x,y)  
and S(x ,x)  ~ x E U k for some pk E O. 

If 91 is a p.e.c, model of To, pk E O and 91~ Uk(a), then S linearly orders 

{b E A :91~E(a,  b)}. Furthermore, if p ( a ) =  ~ and 91 is countable, then the 

order type is that of the rationals. Thus, if 91 is p.e.c, and pk E O, then 91 is a 

model of the sentence "there is an E-equivalence class which is densely ordered 

by S"  holds in 91 iff k E V(91). 

This finishes the proof of the Theorem (positive version). 

To prove the Theorem we will modify the theories To. Let L be the language 

consisting of the previously used symbols U, k and U, together with the following 

symbols: 

(1) unary relation symbols U, J1, J2, and L~, for each (c, d, e ) E  H ;  

(2) ternary relation symbols E '  and S'; 
(3) 4-ary realtion symbols R'cu, for each (c, d, e ) E  H. 

For each L0-structure 91, we define an L-structure 91" in the following way. 

Let 
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and 

J, = {(x,y, 1):gJ~ E(x,y)},  

J2 = {(x, y, 2) : 91 ~ S(x, y)} ,  

Icd,= {(x, y, z,(c, d, e)} : 9A ~ Rr y, z)}, 

U = A .  

Then set A * = Jl U J2 U t..J {Ld, : (c, d, e} E H} U U. Let 

E '  = {(x, y, (x, y, 1)): 9A ~ E(x, y)}, 

S ' =  {(x, y, (x, y, 2)) : 91 ~ S(x, y)} 

and 

R'cd, = {(x, y, Z, (X, y, Z, (C, d, e}}) : 9.1 ~ Rcd,(x, y, z)}. 

Then the structure 91" is 

(A *, U~, U k, U, J,, J2, E ' ,  S', R 'cd,)k <~,,<o,,(,,d,e>~,. 

Now let 

T* -- Th ({~* : 9.1 is a model of To}). 

For a model ~ of T* there is a unique 9.1 (to within isomorphism) which is a 

model of To and for which 9A* -~ ~ .  The following facts are easily ascertained for 

models 9.1 and ~ of To. 
1. 91 is countable iff ~* is countable. 

2. If f:9.1--~ ~ is a positive embedding, then there is a unique embedding 

f* : 9 A * ~ *  such that f*[ A = f. 
3. If g : 9A*----~ ~* is an embedding, then (g [ A ) :  ~ - - - ~  is a positive embed- 

ding. 

4. 9A is p.e.c, iff 91" is an existentially complete model of T*. 

5. 9 A - ~  iff 9A*---~*. 

From 2 it is clear that T* has JEP. From the above facts it easily follows that if 

we let T be the universal part of T*, then T is the desired example. [] 

The theory T constructed in the proof of the Theorem was in an infinite 

language. To convert the example to one in a finite language, we make use of an 

example of Peretyatkin [2]. He showed that in the language consisting of one 

binary relation symbol there is a theory H and a sequence (o', :n  < to) of 

sentences with the following properties. If X_C to, then let Tx = 

H U {o', :n  ~ X} U {--~ o', :nf~X}.  
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1. Each Tx is complete, consistent, model-complete and ~o-categorical. 

2. If X~Cto and ~ is a countable model of Tx, ( i = 1 , 2 ) ,  then ~ ,  is 

embeddable in ~2 iff X1 C X2. 

For n < t o  let Y,={2i:i<-_n}td{2i+l:n<i<to}, and then let Y,o = 

limn Y, = {2i : i < to}. Notice that if i, ./_-< to and Y~ C Y/, then i = j. Let ~ ,  be a 

countable model of Ty.. Given a model 9 /of  T, construct 9~' by "attaching" to 

each a ~ U~ a copy of ~,, and then disgregard the relations U~. Because of 

Properties 1 and 2 above and the definition of the Y~, the universal part of the 

theory T' = Th({W : 9~ is a model of T}) will have the same properties as T yet be 

in a finite language. 
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